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1 Closedness & Exactness

Recall from chapter 5.8 that there are two important and related properties
differential forms (or vector fields) can have. First, we can ask whether a
form/field G = Gidz; + ... + Gpdz, has a potential: if there is some func-
tion f such that G = Vf. A G which has this property is commonly referred
to as exact.
We also see that if G has a potential, it must satisfy the property that for
any indices j and &,
0G;  0Gy
Oz Ox;

which just follows from the equality of mixed partials. A differential form that
satisfies this property is commonly referred to as closed. (So in R?, this is the
same thing as having curl 0.)

So exact implies closed, and Theorem 5.62 shows us that, if our functions
are defined on a convex set, closed implies exact. But closed doesn’t always
imply exact. The canonical example is example 1 in 5.8.

Knowing this, one thing we can ask is: for forms defined on a specific do-
main, can we measure how much closed forms fail to be exact? This might
seem like an odd question, but the hope is that, by isolating and quantify-
ing this specific property, we might be able to identify something intrinsically
geometric about the domain. And in fact, there is a common mathematical
technique that allows us to perform this “measurement”.

=0

2  Quotient Spaces

Speaking very generally, let’s suppose that V' is a vector space and W is some
subspace. Then we'll define a new abstract vector space V/W, called the quo-
tient space, in the following way.



Define a relation on the elements of V' by saying that v; ~ vs if and only if
v1 —vg € W. Then we can separate the elements of V into equivalence classes,
where the class [v1] consists of all v, such that vy ~ v;.

Probably the clearest way to think of this is that we’re defining a new notion
of equality on our space, where everything in the subspace W is treated as 0.
So if v; — ve ends up in W, then it is treated as 0 under our new relation, and
v1 and vy are treated as equivalent.

For an example, let’s take V = R? and W = span{(0, 0, 1)}, the z-axis. Then
two elements (x1, z2, z3) and (y1, Y2, y3) will be equivalent under our relation if
and only if (x1 — y1, x2 — y2, £3 — y3) lies on the z-axis; that is, if and only if 1 =
y1 and z2 = y2. And the equivalence class corresponding to (x1, z2,x3) will
just be all elements of the form (z1, z2, z) for an arbitrary z. In this way, we're
pretty much ignoring the third coordinate and comparing elements based only
on the first two. This gives a natural way of identifying each equivalence class
with an element of R?, given by the first two coordinates.

Now, the important thing about the quotient space construction is that we
can just translate the vector space structure from V' down to the set of equiv-
alence classes V/WW. We can define the sum of two equivalence classes to just
be the equivalence class that contains the sum of any pair of elements from
each, and we can define a scalar multiple of an equivalence class to be the class
containing the scalar multiple of any element.

At this point, we do have to prove that this operation even makes sense.
How do we know that, no matter which representatives we pick, their sum or
scalar multiple ends up in the same equivalence class? This depends on the
fact that W is a subspace.

Lemma 1. These operations of addition and scalar multiplication are well-defined.

Proof. Given v; ~ vy and v3 ~ v4, we want it to show that vy + v ~ vy + vy.
Indeed, vy + v3 — va — v4 = (v1 — v2) + (v3 — v4), which is a sum of elements of
W, and thus lies in W.

Similarly, if v1 ~ vy and c is a scalar, we want that cv; ~ cve. Indeed,
cv; — cvg = ¢(v1 — v2), which is a scalar multiple of an element of W, and thus
lies in W. O

Returning to our example of V = R?, W = span{(0,0,1)}, we saw above
that we can identify the set V/W with R?. And this identification extends to
the vector space structure. If we add an equivalence class containing elements
of the form (z1,x2,*) and elements of the form (yi,y2, *), then we'll get the
equivalence class containing all elements of the form (x1 + y1, 22 + Yo, *), just
as we want.

There’s another example of the quotient construction which doesn’t use
vector spaces, but which you may be more familiar with. Consider the inte-
gers Z, and the subset 3Z—that is, all multiples of 3. Here, the integers have
the structure of a ring: an algebraic system with operations of addition and
multiplication. Though the formal particulars are slightly different, we can get
a quotient ring Z/3Z, which is just the result of setting all multiples of 3 to 0, or



equivalently declaring two integers to be in the same equivalence class if they
differ by a multiple of 3. This system is just the integers mod 3.

The idea of a quotient comes up over and over again throughout math, and
it’s something you'll see in more detail if you take any abstract algebra class.

3 Measuring Inexactness, With Exercise 5.8.4

The set of 1-forms on an open set of R" is a vector space (albeit an infinite-
dimensional one) over R. Also, the collections of closed and exact 1-forms
are subspaces of the space of 1-forms: if we add two forms which satisfy the
derivative condition to be closed, the sum will be closed by the linearity of the
derivative. And if 1-forms G; and G2 have potentials f; and fo, then f; + f2
is a potential for their sum.

So if we want to understand the difference between closedness and exact-
ness in the space of 1-forms on a domain, it makes sense to take the quotient
of the space of closed forms by the space of exact forms. When we do this,
we're effectively setting every exact form equal to 0, so we're just looking at
the different ways closed forms can deviate from exactness.

And, although it wasn’t how the problem was phrased, in Exercise 5.8.4
you did exactly this. The end result of the problem is that for any 1-form F in
the punctured plane R — {(0,0)}, there is some multiple (a/27)F of the form
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such that F — (a/27)F¢ is exact. This is just the same thing as saying that, in
the quotient space of closed forms by exact forms, every form is equivalent to
some multiple of Fy. Put another way, this quotient space is spanned by (the
equivalence class of) Fy. It’s 1-dimensional!

So we now have a precise quantification of how closed forms fail to be exact
in the punctured plane: it can happen, but there’s only one dimension in which
things can go wrong.

4 De Rham Cohomology

This is all a special case of a much more general concept known as de Rham
cohomology, and using the material of section 5.9, we can go into a bit more
detail about this.

In that section, we see how we can define an operation on differential forms
called the exterior derivative d, which takes k-forms to k + 1-forms. Using
QF(U) to denote the space of k-forms on a domain U, we can illustrate this like
so:
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And it turns out that the gradient, curl, and divergence are all different mani-
festations of this operator applied to forms on R3.



The exterior derivative is always a linear operator, and it has the property
that applying it twice always gives 0. This is why the curl of a gradient is 0,
and why the divergence of a curl is 0.

With these properties, our notions of closed and exact forms generalize: a
form is closed if its exterior derivative is 0 (in the case of 1-forms, if the curl
is 0) and it is exact if it is the exterior derivative of some form (in the case of
1-forms, if it has a potential function which it is the gradient of). Or in more
algebraic terms: the closed forms are the kernel of the exterior derivative, and
the exact forms are in the image. Since closed forms are exact, the image is
contained in the kernel.

We have a sequence of things (such as the spaces of 1-forms, 2-forms,...)
and maps from each thing to the next (such as the exterior derivatives) such
that composing any two consecutive maps gives 0: the image of each one is
contained in the kernel of the next one. This situation appears often in math,
and it’s called a cochain complex.

Given a cochain complex, we usually want to calculate the cohomology,
which is the quotient of the kernel by the image at each step. In the case of
the cochain complex consisting of the differential forms on some domain, its
cohomology is referred to as the de Rham cohomology of that domain.

So in other, fancier-sounding words, what you showed in problem 5.8.4
was: the first de Rham cohomology of the punctured plane is R'.

Using tools of algebraic topology, there’s a certain sense in which this tells
you that the space has a single 1-dimensional “hole” (that is, the puncture at
the origin). And more generally, there are connections between the de Rham
cohomology — an analytic/algebraic concept — and the geometry of the space
it’s defined on.



